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Abstract
Manufacturers of nanoparticle-based products rely on detailed information about critical process parameters, such as particle
size and size distributions, concentration, and material composition, which directly reflect the quality of the final product.
These process parameters are often obtained using offline characterization techniques that cannot provide the temporal
resolution to detect dynamic changes in particle ensembles during a production process. To overcome this deficiency, we
have recently introduced Optofluidic Force Induction (of2i) for optical real-time counting with single particle sensitivity
and high throughput. In this paper, we apply of2i to highly polydisperse and multi modal particle systems, where we also
monitor evolutionary processes over large time scales. For oil-in-water emulsions we detect in real time the transition between
high-pressure homogenization states. For silicon carbide nanoparticles, we exploit the dynamic of2i measurement capabilities
to introduce a novel process feedback parameter based on the dissociation of particle agglomerates. Our results demonstrate
that of2i provides a versatile workbench for process feedback in a wide range of applications.

Keywords Nanoparticle characterization · Optical forces · Real-time monitoring · Process analytical technology

Introduction

Nanoparticles in dispersion have unique properties that make
themuseful in awide rangeof applications includingpharma-
ceutics, cosmetics, paint, food, and surface coatings [1–4]. To
achieve the desired performance,manufacturers have to care-
fullymonitor critical process parameters such as size and size
distributions, concentration, material composition, and, if
possible, the shapeof nanoparticles.Conventional characteri-
zation techniques such as electronmicroscopy, dynamic light
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marko.simic@uni-graz.at

1 Brave Analytics GmbH, Stiftingtalstraße 14, Graz 8010,
Styria, Austria

2 Institute of Physics, University of Graz, Universitätsplatz 5,
Graz 8010, Styria, Austria

3 Gottfried Schatz Research Center, Division of Medical
Physics and Biophysics, Medical University of Graz,
Neue Stiftingtalstraße 2, Graz 8010, Styria, Austria

4 Graz Centre for Electron Microscopy, Steyrergasse 17,
Graz 8010, Styria, Austria

scattering [5, 6], and nanoparticle tracking analysis [7] have
been established as reliable offline techniques.However, they
hardly provide the necessary temporal resolution to gain a
deep understanding of process dynamics and their impact
on critical quality attributes, which are drastically gaining
relevance in modern production processes. Despite this, the
complexity of a dispersion is often dominated by effects such
as particle agglomeration and aggregation, which can lead to
highly polydisperse samples, posing a major challenge for
characterization techniques to achieve accurate and repro-
ducible results [8, 9].

In past years, the majority of optical techniques has incor-
porated light for observation purposes only. When focusing
light into a small volume, one can additionally exploit opti-
cal forces exerted through momentum transfer between light
and matter [10]. In this way, nano- and micro-scaled objects
can be optically trapped in three dimensions using a tightly
focused laser beam. This technique is well-known as the
optical tweezers principle and dates back to 1970, when
Arthur Ashkin performed his pioneeringwork [11], which he
was awarded with the Nobel Prize in 2018. Modern optical
traps allow for precise control of orientation, position and
arrangement of particles over a broad size range [12, 13].
Optical tweezers have found application in many disciplines
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such as biology, medicine, and material sciences to inves-
tigate processes at the nano-scale, including protein-DNA
interactions, protein folding, and molecular motors [14].
Their non-invasive character makes optical traps a versatile
and attractive tool for the analysis and characterization of
nanoparticles.

Building upon the concept of optical tweezers, in opti-
cal chromatography [15] a weakly focused laser beam is
used to establish a two-dimensional optical trap for parti-
cles of different sizes, which are pumped into a measurement
cell. Along the optical axis of the incoming laser beam the
optical forces counteract the fluidic ones. For appropriately
chosen laser power and flow velocities, particles eventually
come to a complete halt in the measurement cell at differ-
ent positions, which can then be directly related to particle
size. While this technique has been applied successfully for
single particle analysis in the past, it has a limited capa-
bility for processing large amounts of particles with high
throughput.

In a recent paper [16], a novel characterization method,
Optofluidic Force Induction (of2i), has been introduced. In
contrast to optical chromatography the laser beam and fluid
propagate in the same direction, such that the nanoparticles
to be analyzed experience size-dependent velocity changes,
which are observed and can be used to extract particle size
distributions. This allows for single particle characterization
online and in real time, even for highly polydisperse andmulti
modal samples. To avoid collisions of particles in the focal
region, we use a vortex beam with zero intensity at the opti-
cal axis. A flow-through measurement cell then enables fast
processing of a large number of particles as well as measure-
ments of ultra-low concentrated samples, where low sample
availability might play an important role. The real-time capa-
bilities of the systemmake it attractive formany applications,
as it can reveal dynamic changes in form of process feedback
parameters in response to changing conditions during a pro-
duction run.

In this paper, we apply of2i to industry relevant sam-
ples and demonstrate its capabilities for online and real-time
process feedback. In the context of nanoparticle character-
ization, we provide continuous information about particle
count, size, and size distributions, as well as concentration
at laboratory scale. Additionally, by exploiting the dynamic
measurement principles of the system, a novel process feed-
back parameter is introduced to study particle agglomeration
and dissociation processes. Further, we discuss possible
directions for future extensions towards the extraction of
information about forward scattered light as well as spectro-
scopic information to gain deeper insights into the material
composition of particle ensembles.

Materials andmethods

Materials

In our experiments we used three different types of sam-
ples: Polystyrene (PS) spheres (Thermo Scientific, 3000
Series NIST™ traceable Nanosphere™ Size Standards,≈1%
polystyrene solids in 15mL aqueous suspension) with nom-
inal diameters of 203 nm (±4 nm), 401 nm (±6 nm),
600 nm (±9 nm), and PS spheres (Applied Microspheres,
20000 series NIST™ traceable particle size standard and
count control, ≈1% polystyrene solids, < 0, 1% surfactants
and < 0, 05% preservatives in 20mL aqueous suspension)
with nominal diameters of 789 nm (±22 nm) and 1040 nm
(±28 nm) were purchased commercially. For the prepara-
tion of the Ni-P/SiC electrolyte solution following chemicals
were provided by our industrial project partner: Nickel
sulfate hexahydrate (NiSO46H2O, NSH), nickel chloride
hexahydrate (NiCl26H2O, NCH), phosphoric acid (H3PO4,
PA1), phosphorous acid (H3PO3, PA2), saccharin sodium
salt (C7H4NO3SNa), sodium lauryl sulfate (C12H25NaO4S)
(SDS), sodium hydroxide (NaOH), sulfuric acid (H2SO4)
and silicon carbide (SiC) nanoparticles with nominal diam-
eter of 100 nm. The oil-in-water emulsions were taken from
the H1 and H2 stage of a high-pressure homogenization pro-
cess, respectively, where a H1 sample is obtained by further
homogenizing a H2 sample.

Preparation of polystyrenemixture

For the PS dispersion, a mixture of 203 (200 μL), 600
(200 μL), and 1040 nm (300 μL) PS spheres was pre-
pared initially. During the measurement, 401 nm (200 μL)
PS spheres were titrated into the initial mixture. Similarly,
about ten minutes after the 401 nm particles were titrated,
789 nm (300 μL) PS spheres were titrated into the mixture.
The dispersion was prepared in a way that the total number
of particles detected by of2i does not vary greatly during the
monitoring process. For the dilution factors see Sect. 2.4.

Preparation of Ni-P/SiC electrolyte solution

First, an electrolyte solutionwas prepared by dissolvingNSH
(260g/L), NCH (48g/L), PA1 (40g/L) and PA2 (20g/L) into
deionized water (50% of total water volume). The pH was
adjusted to a value of 1.5 through the addition of saturated
sodium hydroxide solution (1.25 M) and sodium saccharin
salt (2g/L). In a separate step, SDS (2.5 g/L) was dissolved
in deionized water (10–20% of total water volume). The SiC
nanoparticle powder (10g/L) was added to the SDS solution
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and remained under constant stirring for 30min to reduce
particle agglomeration. In the last step, the SDS/SiCnanopar-
ticle mix was added to the electrolyte solution. The Ni-P/SiC
solution temperature was kept constant at 50◦C using a hot
plate stirrer. Again, saturated sodium hydroxide and water
were added to maintain a pH value of 2.00 ± 0.02.

Sample dilution

To comply with our experimental setup, we diluted highly
concentrated samples in ultrapure water (MilliQ® type 1),
0.02 μm microfiltered through an inorganic sterile mem-
brane filter (Whatman Anotop™25; Diameter: 25mm; Pore
size: 0.02 μm). Dilution factors for the pure PS samples are
1:40,000 (203 nm), 1:10,000 (401 nm), 1:5000 (600 nm). The
dilution factor for the oil-in-water emulsions is 1:200,000
(H1,H2).TheNi-P/SiCelectrolyte solutionwasdilutedusing
our in-house developed dilution systemwith a dilution factor
of 1:2000 in continuous mode.

OF2i principle

The basic principle underlying of2i is shown in Fig. 1:
nanoparticles under investigation are dispersed in a solution
and are pumped through a microfluidic measurement cell. In
addition, a weakly focused vortex beam (topological charge
m = 2) propagates in the direction of the flow. Particles suf-
ficiently close to the laser beam become optically trapped in
the radial direction (gradient forces) and experience velocity

changes along the propagation direction z of the laser beam
(scattering forces). The light scattered off the individual par-
ticles is monitored outside the measurement cell. Note that
the capillary acts as a cylindrical lens, thus each particle is
imaged as a line [17] (see side image in Fig. 1). By analyz-
ing the velocity changes as particles travel through the focal
region of the beam, one obtains information about their sizes.
In the future, we plan to extract further information from the
forward scattered light and the emission pattern, particularly
for large particles, as well as from Raman spectra.

Theory

Our theoretical framework is based on Maxwell’s equations
and Mie theory [16, 18]. We have developed a four-step
model for the simulation of nanoparticle trajectories in the
flow cell in presence of a weakly focused vortex beam, which
leads to trapping and velocity changes of the nanoparticles.
The first three steps are concerned with Maxwell’s equa-
tions where we (i) provide an expression for the incoming
Laguerre-Gaussian laser beam, (ii) solve Maxwell’s equa-
tions in presence of a nanoparticle, and (iii) use the total
fields (sum of incoming and scattered fields) to compute the
optical force Fopt(r) acting on a nanoparticle at position r . In
step (iv), we compute the trajectory from Newton’s equation
of motion,

m r̈ = Fopt(r) + Fdrag + Fbrownian , (1)

Rayleigh
Mie

Scattered light

Forward image

Fig. 1 Schematics of optofluidic force induction (of2i). (Top)Nanopar-
ticles to be analyzed are transported through a microfluidic channel
alongside a weakly focused laser beam with an optical vortex (optical
angular momentumm = 2). The purpose of the laser is threefold. First,
through the optical forces in the radial directions nanoparticles suffi-
ciently close to the intensity maxima become trapped in the transverse
directions. Second, the optical forces in the laser propagation direction

push the particles and lead to velocity changes depending on size and
material properties. Third, the light scattered off the particles is detected
and allows monitoring the velocity changes. (Bottom) Scattered light
intensity as recorded by a camera. Each particle appears as a line in the
side image due to astigmatism caused by the capillary. Scattered light of
large particles is recorded in the forward image as a diffraction pattern
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wherem is the mass of the nanoparticle, whichmight include
the added mass due to the fluid, Fdrag is the drag force act-
ing on the particle moving through the fluid, and Fbrownian
accounts for the stochastic forces due to thermal fluctuations
also known as Brownianmotion [19, 20]. For the force acting
on a sphere moving through a viscous fluid with velocity v

we consider Stoke’s drag,

Fdrag = −6πμR
(
v − vfluid

)
, (2)

where vfluid and μ are the velocity and dynamic viscosity
of the fluid, respectively, and R is the radius of the sphere.
For sufficiently large spheres, say for diameters above 10
nm, the momentum relaxation time is so short that we can
approximately set v̇ ≈ 0 [21]. Also, the Brownian motion
doesn’t play a decisive role for larger sphere, as previously
discussed in [18]. For the condition that the optical force is
balanced by the drag force, we get for the particle velocity

v(r) = vfluid + Fopt(r)

6πηR
. (3)

When inferring the particle number distribution from of2i
measurements, we have to account for the fact that larger par-
ticles become trapped more easily than smaller ones, owing
to the increase of optical forces with increasing particle size.

Figure 2 reports simulated trajectories for particles with
diameters of 400, 600, 800 and 1000 nm and refractive index
of n p = 1.59 (PS). The flow velocity vfluid = 0.1 mm/s,
the refractive index of the flow medium nb = 1.33 (water),

and the incoming beam power P = 1.65 W are the same
for all simulations. The particles start at (r , 0, z0), where
z0 = −1 mm is chosen sufficiently far away from the focus
region, such that the optical forces are negligible, and then
propagate in presence of optical andfluidic forces along z.We
observe that particles in the focus region are either trapped
or not. Thus, we define a cutoff parameter rcut(d, n p) as
a function of particle diameter d and refractive index n p

for which particles with a given transverse starting position
r ≤ rcut(d, n p) are trapped and accelerated towards the focus
region of the beam. As previously discussed in [16], we can
define an active volume

Vactive(d, n p) =
[
πr2cut(d, n p)

]
vfluid tmeas , (4)

where the term in brackets is the cross section in transverse
direction and vfluid tmeas is the sampling distance spanned
along the propagation direction of the flow.

For a detailed description of our simulation approach, we
refer the reader to [18], where we have covered the full work-
ing equations and model ingredients, influence of Brownian
motion and refractive index. Further, we emphasize that our
model contains no free parameters and all laser, fluid and
nanoparticle parameters can be inferred from experiment.

Experimental setup

The experimental setup of of2i builds on a two-dimensional
optical trap in a microfluidic flow channel of cylindrical

a

b

Fig. 2 2D projection of the active volume and simulated trajectories for
different transverse starting positions r and diameters of polystyrene
nanoparticles (n p = 1.59). The initial positions (r , 0, z0), laser, and
fluid parameters are the same for all simulations, with z0 = −1 mm
chosen sufficiently far away from the focal region where the optical
forces are negligible. Particles become either trapped (colored trajecto-

ries) or not (gray trajectories), where the active volume and trajectories
of trapped particles are color coded with respect to their size. With
increasing sphere diameter, more particles are trapped as the optical
forces increase for the larger particles. This in turn leads to an increase
of the active volume. Note that for better visualization in the above
panels we only plot the active volume above or below the optical axis
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shape [16], as exemplary shown in Fig. 1. A linearly polar-
ized laser beam is generated by a 532 nm CW DPSS laser
(Laser Quantum, GEM532). The beam alignment is per-
formed using two mirrors and a 5x beam expander. An
azimuthally polarized Laguerre-Gaussian laser mode with
topological charge m = 2 is generated using a zero-order
vortex half-wave retarder (q = 1). A converging lens is
used to focus the vortex beam into a measurement cell. A
microfluidic pump is connected to a multi-port valve and
transports the sample to be analyzed into the measurement
cellwhere the light-matter interaction takes place (see Fig. 1).
The scattered light is magnified by an ultramicroscope setup
consisting of a 10x PLAN microscope objective, an optical
filtering bank, a 75mm focusing lens, and a CMOS camera
providing the raw video signal (see side image in Fig. 1). A
second imaging path is used to monitor the cross section of
the illuminating beam and to observe forward scattered light.
Particles leaving the focal region are transported to waste via
an outlet port. For schematics of the OF2i setup, we refer the
reader to [16, Fig. 7]. A computer running BRAVE Analyt-
ics proprietary software suite HANS provides the user with
control of laser output power, flow direction and speed, and
valve positions via a user interface. Additionally, live visual-
ization of both imaging systems is provided by the software.
The above stated parameter set and experimental setup were
chosen to fit the broad range of applications reported in this
paper, with a dynamic size range of about 150 nm to 5μm.To
deal with smaller or larger particles the optical setup might
have to be adjusted accordingly.

Data processing

Raw video data was recorded at 200 fps using HANS soft-
ware suite 2.3 and processed via matlab routines, covering
the (i) generation of waterfall diagrams and trajectories from
single particle light scattering, (ii) velocity determination via
the trajectory’s slope, and (iii) computation of number-based
particle size distributions from time series. For the velocity
determination, we start by computing a waterfall diagram
from the raw input data by integrating along the vertical
axis of each frame. Such a diagram, denoted I (t, zi ) and
shown as exemplary in Fig. 5a, encodes the sideways scat-
tered light by a particle at position zi and video frame t . In
the next step, we extract images for given positions in the
focal region z f within a range of ±30 pixels. In a second
image we plot a straight line with gradient angle θ weighted
by a Gaussian kernel (σ = 2) in transverse direction. We
choose θ such that the overlap of both images is maximized.
The velocity of a particle is then calculated from θ . Particle
position in pixel format was transformed to a local coordi-
nate system using a calibration constant of 0.7867 μm/pixel.
For cluster analysis of particle ensembles, a one-dimensional
Gaussian mixture model (GMM) with five components was

applied. The trend analysis was performed using the BEAST
algorithm, a Bayesian model for time series decomposition
and change point detection [22]. In the following, we dis-
cuss the main steps to obtain particle size from the measured
velocities.

Particle size distribution

Here we describe the steps performed to obtain a number-
based particle size distribution (PSD) within of2i. First, we
start with the simulation of particle trajectories for particles
with given size, refractive index, and systemparameters (e.g.,
laser power, flow velocity) based on our model discussed
in Sect. 2.6. From the trajectories, we extract the velocity
profile of particles as they travel through the capillary. For
trapped particles, we extract the corresponding maximum
velocities v f ,expt in the focal region z f of the laser beam,
which can be compared with those of Eq. (3). The maximum
velocities and cutoff parameters are used to set up a lookup
table that relates the simulated particle velocity to the corre-
sponding size (for given refractive index n p),

d = d(vexpt, n p) . (5)

Suppose that within a given time interval tmeas a certain num-
ber of particles N̄ (d,�d) with a diameter in the range of
(d, d + �d) is observed. To obtain the PSD n̄(d), we have
to divide this number by the active volume,

n̄(d)�d = N̄ (d,�d)

Vactive(d, n p)
. (6)

Here, Vactive corrects for the fact that larger particles are
trapped more easily than smaller ones, because of the size-
dependent trapping forces, and are consequently observed
more frequently in of2i. See also Fig. 2 and the discussion
above. Thus, once Eq. (5) and the expression for the active
volume are given from our theoretical model, we can com-
pute the PSD directly from Eq. (6).

Results and discussion

In this work, we have performed measurements of highly
polydisperse and industrially relevant samples. We next
present our results, which are divided into three sections:
First, we start by demonstrating the capability of of2i to
measure polydisperse and multi modal samples on the
example of standardized polystyrene spheres with well-
known size distributions and narrow standard deviation (for
details see Sect. 2.1). Second, we present our findings for
an oil-in-water emulsion stemming from a high-pressure
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homogenization process. Finally, we introduce a novel pro-
cess feedback parameter based on the dissociation processes
of SiC nanoparticle agglomerates. All measurements have
been performed with a constant beam power and flow rate
of P = 1 W and V̇ = 4 μL/min, respectively, unless stated
otherwise.

Monitoring of polydisperse samples

One of themajor challenges in particle characterization is the
handling of highly polydisperse and multi modal samples,
which are frequently encountered in industrial processes. To
demonstrate of2i’s capability in characterizing such sam-
ples, we have prepared a dispersion, initially consisting of
PS spheres (n p = 1.59 [23]) with nominal diameters of 203,
600, and 1040 nm immersed in water (nb = 1.33), which
span a broad size range. During the monitoring process, two
additional ensembles with nominal diameters of 401 and 789
nm were titrated into the initial dispersion at different times
with a total delay of approximately ten minutes for each
ensemble, to introduce dynamic changes in the dispersion
(for details see Sect. 2.2).

Figure 3 shows results for a continuous measurement of
PS spheres, as obtained by of2i and computed according to
the scheme discussed above. Let us first focus on the scatter
diagram inpanel (a),where eachdata point represents an indi-
vidually measured particle. By closer inspection of the data,
we observe three distinct particle populations from the very

start of themeasurement throughout the experiment. See also
the three sharp peaks in the particle size histogram shown in
panel (f), obtained after 15min of measurement. After about
17 and 27min, respectively, two more populations emerge in
the scatter plot from the titrated PS samples (401 nm, 789 nm)
and are monitored until the end of our measurement. Again,
the individual peaks can be clearly identified as shown in
panels (e) and (d). To identify the various contributions of
each ensemble, a 1D GMM model with five components
(full covariance) was applied to the total particle size his-
togram on top of panel (a). The corresponding contributions
are highlighted by color and fitted by a Gaussian distribution
(solid line). Note that some low counts in panel (f) are iden-
tified by the 1D GMM and are most likely due to particle
agglomerates, see also the scatter diagram in panel (a).

At this point, two conclusions can be drawn. First, the
continuous measurement of the PS dispersion allows us to
observe dynamic changes in the dispersion. Second, the
weakly focused vortex beam incorporated into the system
enables parallel measurement of single particles over a broad
size range. This can be seen in particular in panel (a), where
we are able to detect a very low concentration of particles in
the size range d > 1000 nm, which we attribute to agglomer-
ates in the dispersion, see also the tailing of the PSD in panel
(d). In general, we see a very good agreement between the
measured PSD peaks and the nominal diameters specified by
the manufacturer, except for the largest particles (1040 nm),
whose size is underestimated in our system. This might be

a b c

d

e

f

55 min

25 min

15 min

÷5

Fig. 3 Continuous monitoring of a polydisperse sample by of2i. (a)
Measured diameters of amixture of PS spheres (n = 1.59)with nominal
diameters of 203, 401, 600, 789, and 1040 nm over a largemeasurement
time. The contribution of each ensemble is determined by a 1DGaussian
mixture model with five components applied to the histogram on top
and highlighted by color. (b) Total concentration n̄ (Particles/mL) and

(c) count N̄ of each cluster, averaged over a period of tmeas = 180 s. For
the smallest particles (203 nm), the concentration is divided by a factor
of five for better representation. Particle size histograms (�d = 10 nm)
obtained after (d) 55, (e) 25, and (f) 15min, indicated by markers on
the y-axis in panel (a)
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due to a slight deviation in the assumed refractive index, how-
ever, further work is needed to clarify this point. Note also a
slight shift of the measured diameter which we attribute to a
power shift of the laser.

Figure3b and c show the total concentration n̄ (parti-
cles/mL) and particle count N̄ , respectively, as obtained by
continuous monitoring and computed by Eq. (6) (�d =
10 nm). We chose a time average of tmeas = 180 s. For
this experiment, the active volume was calculated using the
nominal diameters of the PS spheres enteringEq. (4) (see also
Fig. 2). In panel (b), each line represents the total concentra-
tion (this is n̄ = ∑

d n̄(d)within tmeas) for the corresponding
clusters identified by the GMM. Let us first focus on panel
(c), where we observe a relatively constant particle count,
whereas the contribution of each population varies over time.

To maintain the total particle count throughout the exper-
iment, the initial dilution factor of each population had to be
chosen appropriately. In this case, the amount of small parti-
cles (less frequently trapped) in the initial solution is chosen
to be higher compared to larger particles. This is shownby the
separate lines in panel (b), where the correction by the active
volume, Eq. (4), becomes apparent. As expected, our results
showa significantly higher concentration for the smallest par-
ticles compared to other populations. In the figure we divide
the calculated concentration by a factor of five for better
representation. Our results confirm that of2i is capable of
monitoring particle size, size distribution, number, and con-
centration of highly polydisperse and multi modal samples
over a remarkable size range in real time. Furthermore, we
checked that our measurement scheme produces stable and
reproducible results for continuous measurement over a time
period of at least one hour.

Monitoring of oil-in-water emulsion

In what follows, we demonstrate the applicability of of2i to
infer detailed information about process dynamics of indus-
trially relevant samples. In modern production processes,
manufacturers often rely on offline characterization methods
to check the quality and performance of final products. This
can lead to long downtime and production of large amounts
of waste if failure or abnormalities within the process are not
detected at an early stage. Together with one of our indus-
trial partners, we have implemented of2i for a continuous
monitoring of an established process for the production of
oil-in-water emulsions. Our main goals are to gain a deeper
understanding of the process dynamics and to improve the
quality and consistency in the final product. In addition, we
want to detect changes in the PSD as soon as possible, and
keep the concentration of large particles as low as possible
to reduce waste and downtime during the process.

To investigate the performance of of2i on the example of
a complex emulsion, we have performed measurements on

two representative samples (spherical shape, n p = 1.46) at
laboratory scale. These were taken from different stages of
a high-pressure homogenization process, which we refer to
as H1 and H2, respectively, where H2 is expected to contain
larger particles. Both samples were diluted to comply with
our experimental setup. Initially, we started by monitoring
H1 and after some time introduced H2, resulting in a total
measurement duration of 65min. Figure4a shows as a func-
tion of time the histogram of measured diameters, obtained
by continuous monitoring of the emulsions. In contrast to the
PS samples previously discussed, we observe a very broad
size distribution throughout the monitoring process. We also
note that after some time we start to detect larger particles
in the size range > 600 nm. To gain a better understanding
of the process dynamics, we have performed a trend and
change point analysis by applying the BEAST algorithm
(mean mode) to the calculated particle diameters (see also
Sect. 2.8). The resulting trend (solid line) and change point
(dashed line) are plotted in the same figure as overlay. The
trend line reveals a slight increase after 10min with an abrupt
change towards larger particle diameters at tcp = 17min, fol-
lowed by a continued increase. Here tcp is the change point
detected by the software. This does not come unexpectedly.
Once the H2 sample flows through the measurement cell,
larger particles are detected more frequently by of2i. There-
fore, in our analysis, we assign particles measured before
tcp to H1 and after tcp to H2, respectively. For this kind of
samples, it is often preferred to report measurement results
as a volume distribution, which gives more weight to larger
particles [24]. Similar to the analysis of PS spheres discussed
above, we begin by calculating a number-based PSD taking
into account the active volume. From there we compute the
volume of the individually monitored spheres within a small
size range (�d = 10 nm) as well as the volume of the whole
ensemble.

Panels (d) and (e) report the normalized volume distri-
bution obtained for the two states H1 and H2, respectively.
When comparing the results for the two stages in the process,
we observe three matching peaks in both PSDs, whereas the
secondpeak around350nm is significantly higher inH1com-
pared to H2. The PSD in (e) features a peak around 720 nm
with a long tailing up to the micro meter regime. Although
both the trend analysis and PSDs provide valuable informa-
tion, we seek for an alternative process feedback parameter.

A convenient way to monitor the quality of an emulsion
is by calculating D values, which are related to the cumu-
lative distribution function (CDF) of a PSD and typically
followed by a number. Consider for example D10, D50, and
D90, which indicate the diameter below which 10%, 50%,
and 90% of the entire particle volume are measured. More
specifically, a D50 value of 500 nm means that 50% of the
measured volume is composed of particles smaller than 500
nm. Once the CDF is obtained, one can extract the parti-
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a

b

c

d

e H2

H1

D10

D50

D90

D10 D50 D90

Fig. 4 Continuous monitoring of oil-in-water emulsions (n p = 1.46)
stemming from two stages (H1, H2) of a high-pressure homogenization
process. (a) Number-based 2D-histogram and trend line (mean) cal-
culated from measured particle diameters. The dashed line marks the
transition fromH1 toH2 at the change point tcp = 17min as determined
by the BEAST algorithm. (b) Corresponding D values as a function
of time, extracted from the cumulative PSD (volume based) which is

accumulated over a time period of tmeas = 60 s. D values represent
the diameter below which 10%, 50%, and 90% of the observed particle
volume are detected. (c) Cumulative PSD (�d = 10 nm) obtained from
the underlying distribution shown in (d). (d), (e) Normalized volume
based PSD for the two stages H1 and H2, respectively. The D values
are marked by crosses at the horizontal axis and show a shift towards
larger particles from H1 to H2

cle size from the corresponding percentiles. An example is
shown in Fig. 4c where the CDF is plotted (solid line) to the
corresponding volume distribution shown in (d). The calcu-
lated D values are marked on the horizontal axes (crosses).
When comparing the D values in panels (d) and (e), respec-
tively, we observe a significant shift towards larger particle
diameters for all three parameters. Finally, in Fig. 4b we
report D values as a function of time, which are derived from
the CDFs, each averaged over a time period of tmeas = 60 s.
We first observe a relatively constant behavior of the D val-
ues up until tcp, where we can see a significant increase in
all three parameters. The time-resolved plot of the D values
reveals interesting insights, in particular theD90value,which
is very sensitive to large particle diameters, as indicated by
the fluctuations during the monitoring process.

To summarize this part, we have demonstrated the capabil-
ity of of2i for real-time monitoring of PSDs and D values.
Moreover, our results prove that the system is capable of
detecting changes in the dynamics of industrial relevant
samples.

Monitoring of Ni-P/SiC electrolyte solution

We are currently implementing of2i in collaboration with
one of our industrial partners for continuous monitoring of
SiC nanoparticles in an electrolyte solution used for coatings

within electroplating processes. Before installing our sys-
tem into the pilot plant, we performed measurements with a
down scaled version of the process at laboratory scale. It is
known from the industrial partner that the nanoparticles start
to agglomerate during the process, which has an impact on
the final coating. One of our goals is to monitor and reduce
the amount of agglomerates in response to changing process
parameters, such as temperature and pH. For this purpose,
we have prepared 2L of Ni-P/SiC electrolyte solution (see
Sect. 2.3 for details). Before measurement, we continuously
diluted the sample with an in-house developed dilution sys-
tem (see Sect. 2.4). In this experiment, the flow rate was set to
V̇ = 50 μL/min for the measurement of SiC nanoparticles.

Figure 5 shows results for the trajectories of (a, c) PS and
(b, d) SiC nanoparticles, obtained by of2i. Usually, when
performing measurements with of2i, one obtains waterfall
diagrams from the light scattering of particles (see also
Sect. 2.8), as shown in panel (a) on the example of the PS
nanospheres. From the diagram we can clearly identify sin-
gle particles entering and leaving the observation window.
Things somewhat change for the case of SiC nanoparticles
shown in panel (b), where we observe dissociation of parti-
cle agglomerates as they approach the focal region z f (gray
dashed line) of the laser beam. In this particular case, we can
observe three such events at once. We attribute the dissoci-
ation to large optical forces acting on the agglomerates. As
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Fig. 5 Results of of2i measurements for PS nanoparticles in water
and SiC nanoparticles immersed in a Ni-P electrolyte solution. The fig-
ure shows waterfall diagrams obtained from scattered light and single
particle trajectories of (a) PS and (b) SiC nanoparticles, respectively,
obtained from raw video data (see also Sect. 2.8). For the SiC nanoparti-
cles one observes dissociation of particle agglomerates as they approach
the focal region z f of the laser beam. We perform counts N0 and N1,

respectively, at the reference points z0 and z1, marked as dashed lines.
The difference of the number of particles entering and leaving the mea-
surement cell is shown in (c) and (d), respectively, as a stair plot and
averaged over tmeas = 6 s. The dashed lines in (c), (d) show the aver-
age of the solid line with a significant increase above zero for the SiC
nanoparticles indicating dissociation of SiC agglomerates. The dotted
lines indicate the corresponding waterfall diagram

discussed above, we obtain the particle velocity and subse-
quently size from the slope of the single particle trajectories.
In the case of particle dissociation, however,we can no longer
reliably infer the particle size from the trajectories. Here we
propose a different approach where we introduce a novel
feedback parameter based on the number of particles detected
in our system. Within a time frame of tmeas = 6 s, we count
N0 and N1 particles, respectively, at reference points z0 and
z1 (dashed lines).

Figure 5c shows the difference in particle count N1 − N0

(solid line) for the case of PS nanoparticles wherewe observe
positive and negative values around zero. As apparent from
the figure, we miss some of the particles at the boundaries of
the observation window, however, on average this should be
negligible. As expected, we observe for the PS nanoparticles
a constant average around zero (dashed line). The results for
the SiC nanoparticles are shown in (d) and reveal a mean
value significantly above zero, as well as more frequent pos-
itive peaks in the staircase plot. This allows us to estimate the
time point of agglomeration dissociation and from the peak
height the amount of particles involved in this process.

When analyzing panel (b) in more detail, we see dissocia-
tion of particle agglomerates happening at different positions
relative to the focal region z f of the exciting laser beam. From
this information, we aim to extract information about the
dissociation constants of particle agglomerates. This would
require further experiments as well as some extensions to our
theoretical framework to gain more information on how the

optical forces act in particle agglomerates, which we leave
to future work.

Summary and outlook

In summary, we have presented of2i for the continuous
monitoring and real-time process feedback of industrially
relevant samples. of2i builds on a microfluidic flow channel
and a higher order laser beam that allows characterization
of samples with a high degree of polydispersity and multi
modal PSDs over a broad size range. We have demon-
strated the applicability of our system on the example of
PS nanospheres, oil-in-water emulsions, and SiC nanoparti-
cles immersed in an electrolyte solution. Our results support
of2i’s unique measurement capabilities by providing pro-
cess feedback parameters such as particle count, size and
size distributions, and concentration with single particle sen-
sitivity to reveal process dynamics in real time. Exploiting
the active principle of this approach, we introduced a novel
feedback parameter based on dissociation processes of par-
ticle agglomerates. With some extensions to our current
approach, this could provide us with detailed information
about dissociation constants of particle agglomerates in dif-
ferent electrolyte compositions.

We are currently working on extracting information about
the forward scattered light which is especially observed
for the case of large particles. This might provide us with
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additional information about particle size and shape of ultra-
low concentrated particles or large particle counts (LPC)
encountered in the micrometer size range. In the future,
we plan to extend our characterization process feedback
to include correlative particle analytics with spectroscopic
information of individual particles, where we have already
achieved first promising results on the example of nanoplas-
tics. With these extensions, of2i will provide an even more
versatile workbench for a wide range of applications in both
research and industry.
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